THE INFLUENCE OF BASIC CALCIUM CHLORIDE NUCLEI ON THE HYDRATION OF CALCIUM CHLORIDESILICATE

K. Miskiewicz

INTERBRANCH INSTITUTE OF BUILDING AND REFRACTORY MATERIALS, UNIVERSITY OF MINING AND METALLURGY, CRACOW, POLAND

The influence of $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ nuclei on the hydration of $Ca_3SiO_4Cl_2$ was studied by means of calorimetry, X-ray diffraction, simultaneous DTA-TG and chemical analysis of the liquid phase.

Calc um chloridesilicate $Ca_3SiO_4Cl_2$ is readily produced at 600° in some industrial processes [1, 2]. Its occurrence was first reported by Le Chatelier in 1883, but the interesting hydration properties have been known for only a few years [3–6].

 $Ca_3SiO_4Cl_2$ reacts quickly with water at room temperature according to the equation:

$$Ca_{3}SiO_{4}Cl_{2} + (n+2)H_{2}O \rightarrow CaO \cdot SiO_{2} \cdot nH_{2}O + + CaCl_{2} \cdot Ca(OH)_{2} \cdot H_{2}O$$

In an earlier paper, the influence of gel-like CaO $SiO_2 \cdot nH_2O$ phase on the hydration of Ca₃SiO₄Cl₂ was exported [7]. Interesting results have now been obtained using CaCl₂ \cdot Ca(OH)₂ \cdot H₂O (the second hydration product) as a nucleating agent in the reaction of Ca₃SiO₄Cl₂ with water.

Experimental

Materials

 $Ca_3SiO_4Cl_2$ was synthesized from a mixture of $CaCO_3$, amorphous SiO_2 and $CaCl_2$ is 2:1:1 molar ratio by heating at 800° for 2 h. The product was then ground to a specific surface area of 3000 cm² g⁻¹ (Blaine).

Basic calcium chloride $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ was synthesized from $CaCl_2 \cdot 6H_2O$ and $Ca(OH)_2$. The hot, saturated $CaCl_2$ solution was mixed in appropriate quantity with lime water, shaken for 7 days and then dried in a vacuum

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

MISKIEWICZ: THE INFLUENCE OF BASIC CALCIUM

drier at 40°. The product thus obtained contained over 90% $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$, together with some $CaCl_2$ and $Ca(OH)_2$, was revealed by X-ray diffraction.

Methods

The hydration of $Ca_3SiO_4Cl_2$ was investigated by using a Bioflux differential calorimeter (RWTH, Aachen). The $Ca_3SiO_4Cl_2$ pastes were analysed by means of X-ray diffraction (TUR diffractometer) or simultaneous DTA-TG, using a Mettler thermoanalyser. The liquid-phase composition was determined as follows: Ca^{2+} with sodium versenate solution; Cl^- by Volhard's method; SiO_2 colorimerically, as a complex with ammonium molybdate.

Results

The calorimetric data (Fig. 1) reveal that a 1% admixture $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ led to an increase in the induction period and retarded the hydration of $Ca_3SiO_4Cl_2$. The addition of 5% $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ to the hydrating $Ca_3SiO_4Cl_2$ caused a further 20-min increase in the induction period. However, this admixture did not change the phase composition of the hydration products in the paste of water and with a solid mass ratio initially equal to 1. A similar retarding effect was observed in the suspension of water and solid with a mass ratio of 10. The liquid-phase composition (Fig. 2) shows that $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ lowered the

Fig. 1 Heat evolution curve during $Ca_3SiO_4Cl_2$ hydration with $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ addition. $H_2O/solid = 1$, temperature: 25°. — $Ca_3SiO_4Cl_2$; — $Ca_3SiO_4Cl_2 + 5\%CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$

J. Thermal Anal. 33, 1988

Fig. 2 Liquid phase composition in the suspension $Ca_3SiO_4Cl_2 + 5\% CaCl_2 \cdot Ca(OH)_2 \cdot H_2O + H_2O$. $H_2O/solid = 10$, temperature: 25°

 SiO_2 concentration in the solution to a lesser degree than observed on silica or $CaO \cdot SiO_2 \cdot nH_2O$ addition [4]. On the other hand, the increases in Cl^- and Ca^{2+} concentrations refer to the rapid dissolution of $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ in water. As demonstrated in earlier studies, in suspensions (water to solid mass ratio = 10), this compound is not stable and decomposes quickly. The $Ca(OH)_2$ thus liberated reacts quickly with CO_2 to give vaterite. The liquid-phase analysis confirmed the above findings: the Cl^- to Ca^{2+} concentration ratio corresponded to $CaCl_2$.

The hydration products detectable by X-ray diffraction after reaction for 2.5 h were $CaO \cdot SiO_2 \cdot nH_2O$ and $Ca(OH)_2$. The $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ admixture lowered the $Ca(OH)_2$ content in the paste in comparison with the sample hydrating without any admixture. After hydration for 24 h, the $Ca(OH)_2$ contents were 10% and 15%, respectively. The hydration of samples with and without $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ was almost complete after 24 h. It can be further be concluded that the CaO to SiO₂ ratio in the pastes without additive is lower. The

Fig. 3 DTA curves of (a) Ca₃SiO₄Cl₂ and (b) Ca₃SiO₄Cl₂+5% CaCl₂·Ca(OH)₂·H₂O hydrated mixtures after 24 hours hydration. H₂O/solid = 10, temperature: 25°

J. Thermal Anal. 33, 1988

DTA peak corresponding to the decomposition of $CaO \cdot SiO_2 \cdot nH_2O$ gel did not change (Fig. 3) and the total water contents were almost the same in samples without and with $CaCl(OH)_2 \cdot H_2O$ (23.6% and 24.0%, respectively).

Conclusions

 $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ nuclei, in contrast with $CaO \cdot SiO_2 \cdot nH_2O$ nuclei, retard the reaction of $Ca_3SiO_4Cl_2$ with water. Addition of $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ causes an increase in the CaO to SiO₂ ratio in the gel-like hydration product $CaO \cdot SiO_2 \cdot nH_2O$.

References

- 1 W. Kurdowski, Silicate Industriels, 30 (1965) 500-506.
- 2 M. Regourd and A. Guinier, Proc. of the 6th Int. Congr. on the Chem. of Cem., Vol. I, Moscow 1974, pp. 25–71.
- 3 A. Winkler and W. Wieker, Zeit. Chem., 22 (1982) 52-53.
- 4 W. Kurdowski and K. Miśkiewicz, Cem. Concr. Res., 15 (1985) 785-792.
- 5 W. Kurdowski and K. Miśkiewicz, Proc. of the 8th Int. Congr. on the Chem. of Cem., Vol. III, Rio de Janeiro, 1986, pp. 407–411.
- 6 K. Miśkiewicz, Cement Wapno Gips, 6 (1987) (in press).
- 7 K. Miśkiewicz, J. Thermal Anal., (1987) (in press).

Zusammenfassung — Der Einfluss von $CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$ -Zusätzen auf die Hydratation von Calciumchlorid-silicat $Ca_3SiO_4Cl_2$ wurde durch Kalorimetrie, Röntgenbeugung, simultane TG-DTA und chemische Analyse der flüssigen Phase untersucht.

Резюме — Влияние зародышей кристаллов CaCl₃·Ca(OH)₂ на гидратацию Ca₃SiO₄Cl₂ было изучено методом калориметрии и диффракции рентгеновых лучей, совмещенных с химическим анализом жидкой фазы.